

Roll No.

231161

S-1135

M. A./M. Sc. (First Semester)
EXAMINATION, 2023-24

MATHEMATICS

Paper First

(Discrete Structures)

(MATH—001)

Time : Two Hours] [Maximum Marks : 60

Note : Attempt any four questions. All questions carry equal marks.

1. (a) Let $B = \{1, 5, 7, 35\}$ be the set of positive integers and operations $+$ and \cdot are defined as follows :

$$a + b = \text{lcm}(a, b), a \cdot b = \text{gcd}(a, b) \quad \forall a, b \in B$$

Show that $(B, +, \cdot)$ is a Boolean algebra.

P. T. O.

[2]

(b) In the Boolean algebra B, express the Boolean function :

$$f(x, y, z) = (x + y) \cdot (x + z') \cdot y + z'$$

in its disjunctive normal form.

2. Write short notes on the following :

- (i) Directed and Undirected Graph
- (ii) Simple Graph
- (iii) Degree of a vertex
- (iv) Complete Graph
- (v) Subgraph

3. (a) Solve the recurrence relation :

$$a_{n+2} - 5a_{n+1} + 6a_n = 2$$

with initial condition $a_0 = 1$ and $a_1 = -1$.

(b) Use generating function to solve the recurrence relation :

$$a_n = 3a_{n-1} + 2; a_0 = 1$$

4. (a) Define a relation R on the set Z of all integers as follows :

$$mRn \leftrightarrow m+n \text{ is even } \forall m, n \in Z.$$

Is R a partial order relation ? Prove or give a counter examples.

(b) Define poset and draw the Hasse diagram for the poset :

$$[P(\{a, b, c\}), \subseteq]$$

5. (a) Explain Karnaugh's map for three variables and use it to simplify the Boolean expression :

$$X = A'B'C' + A'BC' + ABC' + AB'C$$

(b) Prove that the sum of degree of the vertices in an undirected graph is even.

6. If L be any lattice, then for any $a, b, c \in L$ show that :

$$(i) \quad a \vee a = a, \quad a \wedge a = a$$

$$(ii) \quad a \vee b = b \vee a, \quad a \wedge b = b \wedge a$$

$$(iii) \quad a \vee (b \vee c) = (a \vee b) \vee c, \quad a \wedge (b \wedge c) = (a \wedge b) \wedge c$$

$$(iv) \quad a \vee (a \wedge b) = a, \quad a \wedge (a \vee b) = a$$

7. (a) Show that the maximum number of edges in a simple graph with n -vertices is $\frac{n(n-1)}{2}$..

(b) Define linear homogeneous and non-homogeneous recurrence relation and solve :

$$a_n = a_{n-1} + 2a_{n-2} \quad n \geq 2;$$

$$a_0 = 0, \quad a_1 = 1$$

[4]

231161

8. (a) Let $A = \{1, 2, 3, 4\}$ and consider the relation $R = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 3), (3, 4), (4, 4)\}$. Show that R is a partial ordering and draw its Hasse diagram.

(b) State and prove Handshaking theorem of the graph theory.

StudyHub HNBGU