

Roll No.

233161
S-3239

M. A./M. Sc. (Third Semester)

EXAMINATION, 2023-24

MATHEMATICS

(Topology)

(MATH—C—013)

Time : Two Hours]

[Maximum Marks : 60

Note : Attempt any *four* questions. All questions carry equal marks.

1. (a) Let T be the collection of subsets of N consisting of empty set ϕ and all subsets of the form

$$G_m = \{m, m + 1, m + 2, \dots\}, m \in N$$

show that T is a topology for N . What are open sets containing 5 ?

(b) Show that the intersection of two topologies for X is again a topology for X

2. (a) Prove that in a topological space, the neighbourhoods of a point satisfy the four axioms of neighbourhoods.

(b) Let (X, T) be a topological space and let A, B be any subsets of X . Then show that :

- $X^\circ = X, \emptyset^\circ = \emptyset$
- $A^\circ \subset A$
- $A \subset B \rightarrow A^\circ \subset B^\circ$
- $(A \cap B)^\circ = A^\circ \cap B^\circ$
- $A^\circ \cup B^\circ \subset (A \cup B)^\circ$
- $A^\circ = A$

3. (a) Prove that a mapping f from a space X into another space Y is continuous if and only if :
 $f(\bar{A}) \subset \bar{f(A)}$ for every $A \subset X$.

(b) Let f be a mapping of \mathbb{R} into \mathbb{R} defined by :

$$f(x) = \begin{cases} x & \text{when } x \leq 1 \\ x + 2 & \text{when } x > 0 \end{cases}$$

Show that f is not $U - U$ continuous.

(a) Show that two disjoint sets A and B are separated in a topological space (X, T) if they are both open and closed in the subspace $A \cup B$.

(b) Show that if (X, T) is disconnected and T' is finer than T , then (X, T') is disconnected.

[3]

5. (a) Let Y be sub-space of X . Then show that Y is compact if and only if every covering of Y by sets open in X contains a finite sub-collection covering Y .
(b) Prove that a subset A of R is compact if and only if A is bounded and closed.
6. (a) Let (X, T) be a first axiom space. Then show that if there exists a monotone decreasing local base at every point of X .
(b) Prove that every second countable space is first countable.
7. Give an example to show that a T_1 -space need not be T_2 .
8. Define the following with example :
 - (a) Base for a topology
 - (b) Limit point
 - (c) Connectedness
 - (d) First countable space