

Roll No.

233461
S-3241

**M. A./M. Sc. (Third Semester)
EXAMINATION, 2023-24**

**MATHEMATICS
(Differential Geometry)
(MATH—E—001)**

Time : Two Hours] [Maximum Marks : 60

Note : Attempt any four questions. All questions carry equal marks.

1. (a) Find the osculating plane at the point on the helix :
$$x = a \cos u, y = a \sin u, z = cu.$$

(b) Prove that a necessary and sufficient condition that a curve plane, is that :
$$[r', r'', r'''] = 0.$$
2. (a) For the curve $x = 3t, y = 3t^2, z = 2t^3$, prove that $\rho = -\sigma = \frac{3}{2}(1 + 2t^2)^2$.

P. T. O.

(b) Find the equation of the osculating sphere at the point $(1, 2, 3)$ on the curve :

$$\mathbf{r} = (2t + 1, 3t^2 + 2, 4t^3 + 3).$$

3. (a) If O, P are the adjacent points of a curve and the arc $OP = s$, show that the difference between the chord OP and the arc OP is :

$$\frac{s^3}{24 \rho^2},$$

where the powers of s higher than the three being neglected.

(b) Find the equation to the developable surface which has the curve :

$$x = 6t, y = 3t^2, z = 2t^3$$

for its edge of regression.

4. (a) By considering the value of $rt - s^2$, prove that the surface $xyz = a^3$ is not developable.

(b) Find the envelope of the family of planes :

$$3a^2x - 3ay + z = a^3.$$

5. (a) Define first fundamental form and give its geometrical interpretation.

(b) Prove the formulae :

$$H\hat{\mathbf{N}} \times \hat{\mathbf{N}}_1 = M\mathbf{r}_1 - L\mathbf{r}_2 \text{ and}$$

$$H\hat{\mathbf{N}} \times \hat{\mathbf{N}}_2 = N\mathbf{r}_1 - M\mathbf{r}_2 \text{ where } \hat{\mathbf{N}} \text{ is}$$

unit surface normal and L, M, N are second fundamental coefficients.

[3]

6. (a) Find the direction coefficients making an angle $\frac{\pi}{2}$ with the direction coefficients (l, m) .

(b) Show that the curves :

$$du^2 - (u^2 + c^2) dv^2 = 0$$

form an orthogonal system on the right helicoid

$$\mathbf{r} = (u \cos v, u \sin v, cv).$$

7. Prove that a necessary and sufficient condition that a curve on a surface be a line of curvature, is that :

$$R dr + d\hat{N} = 0 \text{ at each of}$$

its points, where R is the normal curvature, and \hat{N} is unit surface normal vector.

8. (a) Show that the parametric curves of a surface of revolution which is given by :

$$\mathbf{r} = (u \cos v, u \sin v, f(u)), \text{ are}$$

its lines of curvature.

(b) Find the Gaussian curvature at a point of the surface :

$$x = a(u + v), y = b(u - v), z = uv.$$